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The encapsulation of atomic clusters inside fulleterages has
created new structures for fundamental research and potential
commercial applications. Recently discoveredetallic nitride
fullerenes, MNFs (e.g., BN@GCgo), have an entrapped trimetallic
nitride nanocluster within agfullerene cage, where M is a Group
1B or 4f block element* Biological applications (e.g., MRI @
contrast agents) often require water-soluble fullerene derivétives.
However, many monoadducts are only sparingly soluble in water, f
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need cosolvents, or are suspensibmsproved water solubility has
been demonstrated by increasing the number of cage addition sites
(i.e., monoadducts toward higher adduétsiRecent research
discusses the importance of fullerene aggregation and water
solubility.?

GhN@GCg MNFstO1t are especially of interest for medical
applications. Efforts toward higher adducts of 8@ GCgo MNF
would permit hydrophilic functionalization at multiple cage surface
sites. The motivation for synthesizing higher order MNF adducts
is supported by literature describing the preparation of higher
metallofullerene adducts for medical applicatidfs.

Limited literaturéd3-17 addresses the chemical functionalization
of MNF cage surfaces and derivatizattd# 21 of related classical
metallofullerenes (e.g., Gd@% Gd@Gy). Carboxylations and
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(e.g., Gd@G*2and Gd@G,*2) and Ho@G,? as radiopharma-
ceuticals have been reported with subsequent monitoring of their
biodistribution. MRI interest is piqued based on:8@& Ggo MNF
having three times as many Gd atoms within its cage relative to
the Gd@G, and Gd@ Go.

This work represents initial reactivity results for this new
GN@Cg MNF. Specifically, we report the reactivity of @d@ Ggo
in a cycloaddition reaction and introduce preliminary characteriza-
tion for the first isolated MNF bisadduct. Monoadduct formation
for other MNFs (e.g., SN@GCgo, EN@Ggo, Y3N@GCg) is now
reportedi3-15

It is known that o-quinodimethane diene intermediates and
fullerene cage surfaces react in a {4 2] Diels—Alder type
cycloaddition?#25> and a MNF monoaddu¥!” has been isolated
for SGN@GCgo. In this work, GAN@ Gy, is purified as previously
described?! A 100-mL, round-bottom flask is charged with 5.0 mg
of GALN@GCgo MNF and a molar excess of 6,7-dimethoxy-3-
isochromanoné® Using 1,2,4-trichlorobenzene (TCB) as the sol-
vent, the dark brownish-red solution is refluxed fb h under a
nitrogen blanket. The reaction scheme and corresponding HPLC
traces are shown in Figure 1. Upon solvent removal under reduced
pressure, the crude product mixture is separated by flash chroma-
tography with chloroform. A first flash fraction (€250 mL)

contains only 1.5% bisadduct by HPLC, and a second fraction
(250-500 mL) yields 45.3% bisadduct. Subsequent fractions
(500-750 mL, 750-1000 mL) contain bisadduct in 92.3% and
99.2% HPLC purity, respectively. Due to coeluting reaction
byproducts, column chromatography does not completely separate
GdN@Cyo bisadduct. HPLC chromatography is used as a final
cleanup step for collection of the bisadduct peak at 16 min, and
multiple injections are performed until a single peak is obtained
(Figure 2a). MALDI-TOF characterization data reveal the predicted
m/zvalue (1774) expected for the bisadduct structure aiN&ICso
(Figure 2b). Mass spectral analysis of purified metallofullerene
derivatives commonly reveals loss of functional groups from the
carbon cage surfacdé Fragmentation patterns relative to the parent
ion provide information on the parent ion’s molecular weight and
the number of attached groups by monitoring the fragment’s
molecular weight3:16.21.27

In this work, the bisadduct assignment to the purifiedN&@ Cso
sample is supported by analysis of the mass spectral fragmentation
data (Figure 2b). The presence of two attached functional groups
on GAN@GCgo (i.€., bisadduct) would result in a parent ion (M) of
m/z = 1774, which is observed (Figure 2b). Each attached group
represents 164 mass units, and the loss of one attached group (M
— 164) is observed aiV/z = 1610. Loss of the second attached
functional group (M— 328) from the parent ion bisadduct gives
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Figure 2. (a) HPLC trace of purified G#N@ Cgo bisadduct on a Bucky-
clutcher column, (b) corresponding MALDI-TOF mass spectrum of purified
GN@GCso bisadduct with fragmentation species, and (c) mass spectral
experimental versus theoretical isotope patterns.

an nV/z value of 1446, the molecular weight of underivatized
GEN@Cg MNF. The HPLC trace of purified bisadduct (Figure
2a) reveals neither monoadduct nor unfunctionalizedN&Cso,

and we conclude that these fragment ions result from mass
spectrometry (Figure 2b) and not as impurities in the isolated

NMR and crystallographic analysis to determine locations of the
two isochromanone bonding attachment sites to the cage in relation
to the entrapped GHN nanocluster.
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